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1 Introduction 

Our main focus is to obtain an understanding of how security could be effectively integrated into real­
time systems. Robust systems must be able to both prevent expected attack vectors from succeeding, as 
well as comprehensively monitor themselves and detect intrusion events. Currently, there does not exist a 
comprehensive theoretical framework fo r the integration of security in embedded rea l-time systems. 

Traditionally, real-time systems are modeled as a set of a periodic tasks with timing constraints that are 
then scheduled on a collection of resources (e.g., the processor, memory, bus, etc.). A key insight that we 
believe will be useful is in identifying this resource management nature of RTS and the need for security 
policies to adhere to the strict guidelines imposed as a result. Hence, any security related mechanisms must 
work wi thin the imposed restrictions of timeliness, determinism, etc. On the other hand, these properties 
of RTS actually make it easier to model such systems and perform a rigorous analysis of any solutions that 
will be developed. 

1.1 Specific Problem and Tangible Results 

The goals of this effort are the development of a new, generalized, framework for the integration of security and 
real-time systems that will involve a combination of research along the following axes: 

1. Understanding and classification of current and emerging threat landscapes for sucl1 systems- what types 
of vulnerabilities exist, what attacks are possible, what security properties are essential. 

2. Security policies and system models that bring the seemingly diverse areas of real-time systems and 
security together to develop a framework for resource management algorithms in real-time systems. 

3. Development of security mechanisms that leverage real-time resource managers that will (a) prevent at­
tacks from being successful and / or (b) detect any intrusions/a ttacks once tl1ey occur and (c) keep the 
overall system safe in the event of an attack. 

4. Analysis and evaluation of the effectiveness of the proposed mechanisms, both in terms of their capabil­
ity to meet real-time requirements, as well as their ability to improve the security of the system. We will 
follow an experimental methodology based on the development of suitable case studies and demonstra­
tion platforms. 

1.2 Approach 

We are working on w1derstanding how the resource management nature of such systems affects the process 
of integrating security. To this effect, we analyze existing systems to gain and understanding of (a) what 
security problems can manifest themselves and (b) how they can be fixed in the context of the various 
resource managers in the system. We will present some initial work along these lines in Section 2. 

1.3 Research Plan and Milestones 

We proposed a three year plan of work for our research and continue to make progress along the same 
lines. In the first year, we focused on what we call a "vertical slice" of the problem to show the feasibility 
of the approach. We modeled a set of real-time tasks with security relationships ordered as as lattice of se­
curity levels. In the second year, we significantly expanded the scope of the work to improve the analysis, 
developed a more general model (what we called a "vendor-based model") to describe security relation­
ships between tasks, analyzed the effects of preemption and resource (cache) partitioning and also started 
to develop ideas on how to carry out an attack on real-time systems. In the third year (and beyond), we 
expanded our work in both security integration and attack mechanisms, and worked on demonstrations 
and evaluations in hardware. 
Year I: In the first year, we looked at a specific range of issues in each of the domains: viz., security vulner­
abilities, real-time architectures, scheduling and resource management algoritlm1s and mitigation mech­
anisms, all in the scope of a particular application domain . For our application domain, we focused on 
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unmanned aerial vehicles (UAVs)1 Sections 2 and 2.3 provide det~ls on our work on these topics. 
In the firs t year, we foc used on securi ty attacks that threa ten the confidentiality and integrity of real-time 

systems. Our research was aimed at m itigating such problem by creative scheduling (and broader resource 
management) algorithms. While our initial work is focused on single-core systems, we plan to expand this 
to multicore systems - they bring up interesting problems of their own due to the co-location of real-time 
tasks. We also plan to genera lize our application model (from Sections 2.3 and 2.3.2) that can then be used 
by us (and the real-time community) for research on real-time security. 

Year II: We expanded the work from the firs t year by generalizing the model to describe the security re­
lationsh ips between real-time tasks. We named it the vendor-based model. We then developed a close-to­
optimal algorithm to determine the overhead for the security mechanisms developed in year I. We also 
analyzed the effects of p reemption in such scenarios. Another related topic that we explored was how 
a partitioning of the underlying shared resources (e .g., caches) help reduce the effects of attacks that we 
explored in year I (leakage of information through the cache). 

Finally, we started working on demonstrating actual attacks that can be used to leak information . This 
p rocess requires two steps: (a) an understanding of the exact schedule of tasks that are executing and (b) 

using this information to launch a cache timing a ttack on a specific task. 

Year III: In the third year, we further expanded our w ork in both security and attack mechan isms from 
the second year. We developed a scheme to integrate security policies in legacy systems using opportunistic 
execution [3]. A metric, by means of achievable periodic monitoring, was proposed to measure security of 
the system in such work. We also develop a schedule randomization protocol, TaskShuffler [8], to reduce 
periodicity of the schedules in hard real-time systems that w ill make it harder for attacker to extract system 
behavior. On the other hand, the developed schedule-based a ttack from the second year is fur ther refined 
to tolerate variations in system attributes, m aking the attack more applicable to realistic platforms [1, 2]. 

1.4 Advantages of the Approach 

The m ain advantages of this approach are: 

1. Introduction of security in RTS at a holistic level; 

2. Makes the design of RTS inherently more secure; 

3. Will not require hardware changes, at least initially; 

4. Better understanding of the securi ty challenges in the field of Real-Time Systems. 

2 Current State and Results 

Publications: 

1. "Real-time Security through Scheduler Constraints" published in Euromicro Conference on Real-Time Sys­
tems (ECRTS), Mad rid, July 2014. 

2. "A Generalized Model from Preventing Information Leakage in Hard Real-Time Systems." published in Rea l­
Time and Embedded Systems and Applications (RTAS), Seattle, April 2015. 

3. "In tegra ting Security Constraints into Fixed Priority Real-Time Schedulers" published in Rea l-Time Systems 
Journal, 2016. 

4. "TaskS!zuffler: A Schedule Randomization Protocol fo r Obfuscation Against Timing Inference Attacks in Real­
Time Systems" published in 22nd IEEE Real-Time and Embedded Technology and Applications Sympo­
sium (RTAS), April 2016. 

1These ideas can also be applied to unma~med w1derwater vehicles (UUVs). In this work we focus on UAVs and will leave the 
demonstration on UUVs for fu ture work. 

2 



5. "ScheduLeak: An Algorithm for Reconstructing Task Schedules il~ Fixed-priority Hard Real-time Systems" 
presented in 1st Workshop on Security and Dependability of Critical Embedded Real-Time Systems 
(CERTS), November 2016. 

6. "Exploring Opportunistic Execution for Integrating Security into Legacy Hard Real-Time Systems" in IEEE 
Real-Time Systems Symposium (RTSS), November 2016. 

We now present detailed information about what we have achieved in the past three yea rs. 

2.1 Integrating Security into Real-Time Scheduling 

We iden tified one security p roblem- tha t of confidentiality when a sys tem has shared resources, e.g. , caches, 
buses, etc. Our i.n.itial focus is to identify how this problem can be reconciled with the traditional real-time 
scheduling requirements on single core p rocessors. 

2.1.1 Information Leakage Prevention 

It has been shown that the use of shared resources makes it possible for information to be leaked between 
tasks w ithout the use of explicit communica tion [4, 6] . The issue of covert timing channels between tasks 
of different security levels in the RM scheduler was previously considered [7]. We, in contrast, focus on 
information leakage due to the sharing of resources2 such as the cache, DRAMs, I/0 bus, etc. 

In our Year I work, we proposed the following: cas ting security-related requirements in the form of real­
time scheduling constraints. This enabled us to directly reason about the effects of integrating security into 
RTS (e.g., effects on schedulability). The problems related to infonnation leakage between real-time tasks 
with different security levels was an example of a security issue that must be solved by tl1ese techniques. 
We considered a uniprocessor system following the Liu and Layland task model [5] that contains a set of 
sporadic tasks scheduled based on the Rate Monotone (RM) policy. We are concerned with the leakage 
of information between tasks of different criticality. While we started by considering a standard security 
model consisting of a lattice of security levels, we found that in some cases this model can be limited in 
scope. Hence, we developed a new, generic model (in Year II) that can capture the exact security relationships 
between every pair of tasks in the system; we discuss this vendor-oriented model in more details in Section 
2.3.2. 

More often than not, every time there is a switch between tasks belonging to different security levels 
there is a possibility of information leakage through shared resources such as the cache. We believe that 
through the use of intelligent scheduling mechanisms it is possible to integrate security at the design phase 
of RTS and reduce this potential for information leakage via shared resources. A cost must be paid for 
each shared resource in the system to prevent this leakage of information. In our work, we discuss various 
methods of integrating such a penalty (and associated constra ints) into schedulin g policies for real-time 
systems and derive analysis bounds for the same. 

We developed two mechanisms to p revent information leakage between two tasks. The first method 
consists in the use of a synthetic 'flush task' (FT) that resets the state of any resource that might be used to 
leak information. For example, in the case of a cache, we can simply evict all cache lines. Note tlus incurs 
some overhead, both because dirty cache lines needs to be written back to main memory upon executing 
theFT, and because useful cache line might be evicted, forcing the next executin g task to reload them in 
cache. 

The second mechaJu sm consists in partitioning the resource: if we assign to two tasks disjoint sections 
(partitions) of the shared resource, then there is no w ay for the tasks to communicate through said shared 
resource. However, iliis reduces the amount of resource available to each task, thus potentially incurring a 
timing penalty. For example, cache can be partitioned usin g techniques at either the hardware or software 
level, but reducing the amow1t of cache ava ilable to any given task might increase the number of capacity 
misses aJ1d thus in crease the execution time of the task. 

20 ther than the processor core. 
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In the first yeax of the proposal, we focused on the simpler mo~el considering an ordered set of secu­
rity levels. Based on this model, we proposed a set of scheduling constraints that can be used to guar­
antee the security properties using a flush mechanism. We described the effect of such constraints over 
a variety of real-time scheduling algorithms, and devised a schedulability analysis for the simplest case 
(non-preemptive fixed-priority scheduling). 

ln Year 11, we significantly expanded the scope of the work by achieving the following major contribu­
tions: 

1. We developed a close-to-optimal algorithm to determine the number of flushes required to guarantee 
the security requirements for a given task under analysis under the vendor-oriented model. 

2. We extended such algorithm to take into account the effects of partitioning. 

3. Based on the previous two points, we derived a schedulability analysis to determine whether a set of 
real-time tasks can be scheduled while guaranteeing all security requirements based on a combined 
flushing and partitioning scheme. 

4. Our investigation reveals that whether a task is executed preemptively or not has a large impact on 
the overhead of the devised security mechanisms. Hence, we developed an algoritlun to optimally 
determine whetl1er each task should be executed preemptively or not. 

5. We created a design-exploration methodology to allow the designer to search for an optimal system 
configuration. The main idea behind our design exploration technique is tl1at different tasks are more or 
less susceptible to the effects of partitioning, i.e., tasks with small working sets can be assigned to small 
partitions, while tasks with large working sets need the entire resource. This allows us to reduce the 
overhead of flushing by assigning Jess-sensitive tasks to separate partitions. 

6. To study the effectiveness of our solutions, we are currently working on demonstrating an attack on a 
typical wunanned vehicle platform- we intend to show how an attacker can gauge tl1e exact schedule 
of the system and then use it to law1eh a cache-based side-channel attack. Section 2.2 provides more 
information on this topic. 

2.1.2 Integrating Monitoring and Detection Mechanisms in Legacy RTS 

Given the increasing risk of cyber attacks, it is essential to have a layered defense and integrated resilience 
against such attacks into the design of RTS. However, any security mechanisms have to co-exist with real­
time tasks in the system and have to operate without impacting the tinting and safety constraints of the 
control logic. Besides, the embedded nature of these systems limits the availability of computational power 
(e.g ., memory or processor) required for resource-extensive monitoring mechanisms. This crea tes an appar­
ent tension between security requirements (e.g., having enough cycles for effective monitoring and detec­
tion) and the timing <md safety requirements. For example, a critical parameter is to determine how often 
and how long should a monitoring and intrusion detection task execution to be effective but not interfere 
with real-time control or other safety-critical tasks. While this tension could potentially be addressed for 
newer systems at design time, this is especially challenging for retrofitting legacy systems where the control 
tasks are already in place and perhaps cannot be modified. Any haxdware and/ or software-level modifica­
tions to those legacy system parameters is costly since it will go truough several verification and validation 
steps and may increase system downtime. 

Given the tension between security and tinting requirements, while integrating security mechanisms 
into a practical sys tem, findiJ1g the frequency of execution of the monitoriJ1g tasks is an important design 
parameter that trades securi ty requirements with timing constraints. If the interval between consecutive 
monitoring events is too large, the adversary may harm the system (and remam undetected) between two 
iJwocations of the security task. In contrast, if the security tasks are executed very frequently then it may 
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impact the schedulability of the real-time tasks. Herein lies an i;mportar1.t trade-off between monitoring 
frequency and schedulability. 

To integrate security tasks into legacy RTS, in preliminary work [3] we address the problem of deter­
mining the frequency of execution (e .g., periods or inter-monitoring interval) of the security tasks. Our 
approach to integrate security w ithout perturbing real-time scheduling order is to execute security tasks at 
a lower priority tasks than real-time tasks. We refer this scheme as opportunis tic execution since the security 
tasks are only allowed to execute opportw1istically only during slack times when no other real-time tasks 
are rwming. 

We propose to measure the security of the system by means of the achievable periodic monitoring. Let Ti 
be the period of the security task that needs to be determined. Since our goal is to minimize the pertu rba­
tion between the achievable (i .e., w1known) period Ti and the desired period Tl es, we define the following 

metric: ?]i = r;:s that denotes the tightness of the frequency of periodic monitoring for the security task '~i · 
Thus 1J = 2.:: Wi 1Ji denotes the cumulative tightness of the achievable periodic monitoring for a set of secu-

r ;Er s 

rity tasks rs where wi is the designer provided weighing factor tha t may reflect criticality or severity of the 
security tasks. This monitoring frequency metric provides one w ay to trade-off security w ith schedulability 
- if the interval between consecutive monitoring events is too large, an adversary may remain w1detected 
and harm the system between two invocations of the security task, on the other hand, a very frequent ex­
ecution of security tasks may negatively impact the schedulabili ty of the real-time tasks. Hence, to find 
the desired 1J of the target system we formulate a constraint optimization problem and also developed a 
polynomial-time solution that allows us to execute security routines with a frequency closer to the desired 
values while respecting the temporal constraints of the other real-time tasks. 

2.1.3 Schedule Randomization Protocol 

One way to protect a system from certain attacks (e.g., the schedule-based side-ch cum el attack) is to random­
ize the task schedule to reduce the deterministic nature of periodic real-time applications. By rcu1domizing 
the task schedules we can enforce non-determinism since every hyper-period will show different order 
(and timing) of execution for the tasks. Unlike traditional systems, randomizing task schedules in RTS is 
not straightforward since it leads to priority inversions that, in turn, may cause missed deadlines- hence, 
putting the safety of the system at risk. 

Hence, we proposed TaskShuffler [8], a randomiza tion p rotocol for fixed-priori ty scheduling algorithm, to 
achieve such randonmess in task schedule. For instance, by picking a random task instead of the one with 
the highest-priority at each scheduling point, subject to the deadline constraints. The degree of rcu1donmess 
is flexible in TaskShuffler. Based on the system's needs, TaskShuffler implements the following randomization 
schemes: 

• Randomization (Task Only): This is the most basic form of rcu1domization in contrast to other schemes 
introduced below. We randomly pick a task to execute whenever a task arrives or fini shes its job, i.e., at 
the scheduling points. The effectiveness against the schedule-based side-ch cum el attack is limited since 
the busy intervals in this scheme remains the sam e. 

• Randomization with Idle Time Scheduling: In addition to the rcu1domness p rovided in the basic scheme, 
we include the idle task (e.g., the dummy task executed by an RTOS when other real-time tasks are not 
running) at each scheduling point. It eliminates the periodicity of busy intervals (from hyper-period's 
point of view). This scheme makes it harder to p roduce effective results from the schedule-based side­
chcumel attack. 

• Randomization with Idle Time Scheduling and Fine-grained Switching: To push the rcu1domization to an ex­
treme, one could choose to rcu1domize the schedule every tick. That is, the scheduler will rcu1domly pick 
a task to execute, subject to the deadline constraints, in every tick interrupt. This way; we ga in the m ost 
rcu1donmess for the schedule. However, it greatly increases the overheads and thus may not be applicable 
for all use cases. 
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2.2 Attacks and Analysis 

One facet of our research is to study the mechanisms that ru1 attacker can use to enter the system and 
the information that can be gained as a result. In this section we enumerate our ongoing work on attack 
mechanisms for real-time systems. 

While examining various side channel attacks ru1d the information each attack can reveal in real-tin1e 
systems, we identified that an adversary can potentially reconstruct the schedule of a hard real-time sys­
tem by observing the active states of the scheduler. A leakage of scheduling behavior of the system gives 
attackers sufficient information to pinpoint the start point of any selected task and launch an attack with 
an increased precision (e.g., cache timing attack) with minimum footprint. Since this study focuses on the 
leakage inside of the system, we assume that the attacker has already gained control of one or more user 
tasks as well as some runount of task information such as task periods and execution times. Adversaries in 
this scenario can gain access to the system due to vulnerabilities in either the system integrator or untrusted 
vendors. 

We developed a sophisticated algorithm, ScheduLeak [1, 2], to reconstruct the scheduling based on the 
gathered active state data - it is being implemented on both, Zedboard (a ARM Cortex-A9 development 
platform running FreeRTOS) and a simulation tool that we specifically built for verifying and analyzing 
experiment results. Furthermore, the cache timing attack that follows the reconstruction of the scheduling 
is also implemented on the Zedboard. 

2900m5 3000ms 3 tOOms 3200 ms 3300ms 3400ms 3500ms 3600ms 370 0 ms JBOO ms 3900ms 4000ms 4 100ms 420 0 ms 4300ms 4400ms 

(a) 

11 . II 
(b) 

--

1' r~tf· I·' 
.·. 

r [iJ ~ ~t 
l · .· 

- -
(c) 

Fig. 1: Experiment Result of The Scheduling Reconstruction. (a) Ground truth of the scheduling. (b) Busy 
intervals captured by idle task. (c) The result of scheduling reconstruction. 

2.2.1 Schedule Reconstruction 

To capture the state of the system schedule, we propose to use an observer task. The observer task can be either 
the lowest priority task owned by the attacker or the idle task that is injected ru1 "observing function". Being 
the lowest priority task in a preemptive real-time system makes it possible to measure the active time of the 
entire system. 

However, measuring the active time doesn' t provide us with enough direct information about the sdled­
ule . In fact, active time intervals are more like pieces of separate chunks of busy inteTvals that are composed 
of unknown nwnber of jobs from each task. Thus, in order to reconstruct the schedule, we develop an al-
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gorithm to analyze each busy interval as follows: 

1. Analyze each busy in terval individually and infer possible task combinations. 

2. Calculate the arrival tim e w indow of each task based on the inferred task combina tions in each busy 
interval. 

3. Reconstruct the scheduling for each busy interval w ith the calculated arrival time w indow. 

Step 1 focuses on the problem of finding the quanti ty of each task constituting a busy interval. Note tha t 
every busy interval is an alyzed independently in this step and some busy intervals may result in multip le 
inferences. Step 2 infers the possible arriva l time w indow of each task in each busy interval. For one task, 
the advanced arrival time window is calculated by intersecting all the possible w indows of the task in every 
busy interval. The arriva l time w indows are then used by a compact RM scheduling sim ula tor specific for 
reconstructing the scheduling of an y selected busy interval in step 3. 

Figure 1 presents the result of the reconstruction on the Zedboard . Part (a) shows the ground truth (the 
actual schedule) that we want to reveal from the system. Part (b) depicts the busy intervals captured by 
the hijacked idle task. These busy intervals are p rocessed by an analysis algorithm, result from which are 
presented in part (c). With the comparison between ground truth and the result of reconstruction, it shows 
that the proposed attack scheme can successfully restore the scheduling by merely observing the active 
state of the system. 

In the second year, the algorithm works tmder the assumption that the task execu tion times are fixed to 
the worst case execution times. This limits the developed attack scheme to the systems without uncertainty. 
In the third year, we further relax this assump tion and refine the algorithm to make it tolera te variations in 
task execution tim es. This makes the attack applicable to more realistic use cases. 

The results gained from this process will be used to latmch a cache timing attack on a specific task as 
explained in the following section . 

Note: The above work on schedule reconstruction was carried out in co llaboration with Prof. Negar 
Kiyavash 's group at UIUC. 

2.2.2 Cache Timing Attack 

A cache timing attack is a side-channel attack that 
manipulates an indirect (storage) leakage ch a.Jm el 
to steal certain information from a system. The at­
tack exploits the leakage channel through the cache 
memory that makes it possible to infer the cache 
memory usage of a sp ecific task. 

In our attack scheme, we consider compromis­
ing the highest priority task. In contrast to the idle 
task or the lowest priority task, a task with the high­
est priori ty has the shortest period (rate-monotonic 
scheduling) that gives it privileges to be scheduled 
with a higher frequency and finish a comp lete job 
w ithout being interrupted. These characteristics 
are beneficial for the a ttacks that require computa­
tion of algorithm in a continuous time, e.g., cache 
timing attack. 

In our implementation, the attack is triggered 
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once we detect the execution of a " target" task - Fig. 2: Experiment Result of The Cache Timing Attack 
based on the scheduling analysis from Section 2.2.1. 
The compromised task (with highest priority) launches the cache tinting attack right at the end of the exe­
cu tion of the busy interval that includes the target task. It measures the cache memory usage for the target 
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task. By replicating this process multiple times, we can reasonably .infer the memory usage behavior of the 
target task. 

Figure 2 shows the experimental results of the attack targeting a task that switches between two memory 
consumption I operational modes: (i) processing 32KB images and (ii) processing lOOKB images. From these 
results, the cache usage behavior of the target task can be successfully inferred and the two operation modes 
are distinguishable. 

2.3 Demonstration Platform 

In general, a big challenge for real-time system researchers, in spite of ilmovating new tecluuques for com­
mon system issues and supportive mathematical proofs, is to seek a realistic hardware platform to demon­
strate and implement their solutions ii1 practice. To address this cl1allenge, we have decided to leverage 
the Hexacopter Avionics Case Study developed by the Real-Time Embedded Systems Lab (RESL) at the 
U11iversity of Waterloo (UW). In particular, we use tills case study to: 

• derive implementation parameter (e.g., flush time, partitioning overhead) required to drive our theoreti­
cal research; 

• test the implementability of devised security mechanisms; 

• evaluate mechanisms on a realistic case study of an unmanned verucle. 

The existii1g Hexacopter case study only consisted of software runnii1g on two Beaglebone boards: one 
rwmii1g a hardware-in-the-loop (HIL) module (as a simulated model of the real Plant), and another board 
(Electronic Control Unit, ECU) rwming an Autopilot application. The HIL module is connected to a real 
hexacopter with 3-degrees of freedom to retrieve roll, pitch and yaw iluormation; the HIL itself simulates 
the position of the vehicle. In tills way, the platform can be realistically tes ted without the need to fly the 
UAV outside3. 

Our demonstrator builds on top of the existing Hexacopter ECU. In abstract, sensor data (both real and 
simulated) are fed from the HIL to the ECU over a bidirectional serial conununication port. Part of the 
sensor data, such as GPS, which are forced to be silnulated (due to ii1door constraints), are generated by the 
simulated model of the plant; the rest are produced by the Hexacopter ii1ertial navigation sensors. After 
making done some computations on the received sensors data, the actuation data is sent back into the 
simulated plant, again through the same serial communication port. The main tasks in charge of the above 
functionalities commmucates through global data structures which are synchronized by control variables. 
The controller I actuator task that computes the control action and sends actuation data to the HIL is periodic 
with a frequency of 50Hz. 

To properly demonstrate and test our devised security mecha11isms on the Hexacopter platfonn, we 
maiiuy worked in two directions. First, we ilnplemented a suitable hardware/ software platform and ported 
the Autopilot application to the new platform; second, we created a more complex case study by ii1cluding 
additional sensing and communication tasks ii1 the ECU. 

2.3.1 Platform Implementation 

To allow quick proto typing and testing of the devised mechanisms, we decided to migrate the HW /SW 
platform to a multicore FPGA-based ARM platform ruruung the FreeRTOS operating system. The config­
urability of the FPGA-based platform allows us to easily test hardware-based mechanisms. At the same 
time, the FreeRTOS kernel is lightweight and simple, makii1g a perfect candidate to quickly implement and 
test various security-aware scheduling mechruusms. 

As a fu·st step, we performed the achtal HW port, ensuring that the HIL could be cmmected to the new 
ECU hardware, a Xilinx Zynq FPGA board that cru1 implement either a dual core ARM A9 processor or a 

3Note that UAV regulation is stricter in Canada compared to the US: Canada's federal transport ad ministration requires written 
permission for every experiment performed in the airspace. 
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2-8 soft core systems (Xilinx Microblaze). We also configured FreeR'fOS to rw1 on the Zynq platform. Then, 
we worked on porting the software application and implementing our devised security mechanisms: 

1. Autopilot port: we ported the autopilot application to FreeRTOS running on a single core ARM system. 
The previous autopilot version was running on Linux, which is unsuitable to conduct experiments on 
hard real-time scheduling. Due to differences in library support and execution semantics, the code had 
to be significantly updated. 

2. Platform characterization and evaluation: we characterized both the hardware platform and fue appli­
cation by extracting relevant meh·ics, includil1g scheduling overhead, flu sh time, worst-case execution 
times based on resource partitioning, etc., to better characterize our schedulil1g analysis. 

3. Flush mechanism implementation: we extended FreeRTOS to implement the flushing mechanism for 
both Ievell and level 2 cache. Our implementation leverages hardware support to efficiently perform 
the cache flush, and is able to check whether a flush is required in constant time in tl1e number of tasks. 

4. Partitionil1g implementation: we implemented a partitionmg for level 2 cache. Our system supports 
cache-way partitioning, where each task can be assigned to one or more of the 8 available ways m level 
2 cache. 

5. Sd1eduling implementation: we implemented the devised scheduling algorithm m FreeRTOS. In par­
ticular, the OS has been extended to selectively allow tasks to execute either preemptively or non­
preemptively. Also, the scheduler has been modified to check at run-time whether a FT execution is 
required before switching to a new task. 

Note: While most of the above was implemented at the University of Waterloo, we are currently devel­
opil1g some aspects of the platform at the University of Illinois. So far, we have been able to port FreeRTOS 
on to an dual core ARM zedboard system and also set up the various drivers and software tasks. Our initial 
objective is to demonstrate a leakage-based attack (Section 2.2) on a realistic platform and the show the 
efficacy of our proposed solutions. 

2.3.2 Avionics Case Study and Security Model 

The original Hexacopter case study comprised only the Autopilot application. To build a more ilwolved 
demonstrator, we added other applications to the platform to perform additional sensmg and communica­
tion tasks. 

Figure 3 shows the main tasks comprismg our new case study, as well as their communication patterns. 
The sensm~ control law and actuator tasks comprise the existing Autopilot application. We assume that 
the UAV is employed to capture reconna issance video through an integrated camera. Images are captured 
from the camera by the corresponding driver, encoded in a compressed format, and then encrypted before 
bemg transmitted to the base station . We further assume that the Autopilot and Camera subsystems have 
been coded by different sub vendors. Fmally, the system integrator connects the two subsystems by means 
of a mission planner tasks, which determines navigational way-points, and a network subsystem that ex­
changes information with a base station through wireless comn1w1ication. Some tasks must be protected 
(e.g., because of their security classifications, or because they contain proprietary algoritlm1s) and should 
not leak information to tasks of otl1er vendors. This vendor-oriented security model creates a non-trivial se­
curity relation between the various tasks, which makes enforcing security requirements challenging. Note: 
This above model was developed in collaboration with Stanley Bak, a researcher from Air Force Research 
Labs, Rome, NY. 

In particular, we were able to demonstrate that the discussed vendor-oriented security constraints cannot 
be modelled by a standard multi-level security model. Tl1is is because stand ard models consider a lattice 
(i.e., a partial order) of security levels, which implies that security relations must be transitive: if a task 
7 1 must be protected from 7 2 and 7 2 must be protected from 7 3 , tl1en 7 1 should be protected from 7 3 as 
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Fig. 3: Avionics Case Study: Tasks and Protection Assignments 

well. However, this is not the case in our discussed case study: for example, the Encryption task must be 
protected from Control Laws, and Control Laws must be protected from Camera Driver, but Encryption 
does not need to be protected from Camera Driver, since they belong to the same sub vendor. Hence, to 
properly capture the requirements in our case study, we developed a new generic model consisting of a 
matrix of security requirements (no-leakage) between any two tasks. The model has then been used as 
the basis of our theoretical analysis discussed in Section 2.1. Furthermore, the FreeRTOS implementation 
described in Section 2.3.1 directly implements the discussed model by incorporating the no-leakage relation 
in the descriptor of each real-time task. 

In Year I, we ported the hexacopter demonstrator to the described platform, implemented the avionics 
case sh1dy, and realized the flush mechanism. In Year II, we devised the vendor-oriented model, imple­
mented the partitionirlg scheme, performed platform characterization and testing, and implemented the 
devised schemes in the FreeRTOS scheduler. 
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